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TECHNICAL DESCRIPTION OF COMPUTATIONAL PROBLEMS 
IN THE INTERCOMPARISON OF 3D RADIATION CODES (I3RC) 

Anthony B. Davis,t Alexander Marshal<,:! and Robert F. Caha1an:L 

‘ILos Alarms National Laboratory, Space & Remote Sensing Sciences Group (NIS-2), Los Alamos, NM 87545. 
SNASA ’S Goddard Space Flight Centu, Climate & Radiation Branch (Code 913), Greenbelt, Md 20771. 

Outline 
We describe in unambiguous mathematical detail the computational problems of interest to 

the Intercomparison of 3D Radiation Codes (I3RC), Phase I. In section 1, the dependent and 
independent variables of the flD radiative transfer equation (RTE) are defined and the I3RC 
problems are set-up through thc specification of boundary conditions, or an internal source-term, 
and the main difficulty in computational radiative transfer is traced to the multiple scattering term in 
the RTE. In section 2, the required output quantities are defined and related to the Independent 
Pixel Approximation (PA)  which is in essence the starting point of I3RC. Section 3 describes 
how the input (extinction) and output (radiation) fields for the 3 test-cases are specified numerically 
and section 4 summarizes the choices of optical and illumination parameters, case-by-case. 

1. Setting Up the General 3D Albedo Problem for Numerical Solution 
We are given an open 3D domain M = (O,Lx)O(O,Ly)O(O,L,) which represents an optical 

medium with a spatially variable (total) extinction o(r) with r = (x,y,z)T where superscript “T” 
means transpose. We will assume here spatially uniform single-scattering albedo a0 and phase 
function p(Sh*Q’) where &2(’) is thc unit-vector indicating propagation direction after (before) a 
scattering event. We wish solve the steady-state integro-differential RTE [Chandrasekhar, 19501 

(1) 
for Z(r,S2) wherc r E /n, the “closure” of the open set M, and llQll =: G z  = a= 1; S(r ,Q)  
designates an internal source term. We will represent the unit vector Q r- (Qx,Qy,Qn,)T in polar 
coordinates; so Q, = qcoscp, = qsincp, Qsz, = p (q = .\JI-ct2) where 0 = cos-1p and cp are the 
usual polar angles. The phase function has been assumed azimuthally symmetric and is normalized 
so that [p(Q7*Q)dsL = 1 where ps := Q’*Q is the cosine of the scattering angle and dQ = 2 n d ~ ~ .  
Physically, this means the scatterers are either spherical (like cloud droplets) or randomly oriented. 
Extinction ~ ( r ) ,  also assumed independent of direction of propagation, is related to the photon 
mean free path (MPP) h -- l/o which, importantly, is a local quantity in 3D radiative transfer. 
These optical properties are dependent on the density of scatterers and their cross-sections for 
scattering and absorption, appropriately averaged over the droplet population. Similarly, p(ps )  is 
related to the population averaged differential cross-section for scattering; an important parameter 
of the phase €unction is the asymmetry factor g = 2n/psp(ps)dps. 

This solution is uniquely defined as soon as we specify S(r ,Q)  and the boundary 
conditions (BCs) for Z(r,Q) 011 JM = &&\Ma In the 13RC study, we are interested in so-called 
“albedo” problems where S(r,SZ = 0 in Ecl. (1) and 00 = cos-lpo is the solar zenith angle (go = n: 

Vel = -o(r>Z(r,Q) + t~o~(r )Jp(Q’  @Q)l(r,Q)dQ? + S(r,Q) 

in 13RC conventions): for (x,y) 4 7  E (O,L,)O(O,Ly), we set 

where Fo is the solar constant, and 

in absence of surface reflcction, or 
~(”W,O,Q) = 0, Q, > 0, 

for a Lambertian surface with spatially uniform albedo a; in the horizontal, we use cyclical BCs, 

Z(Lx,y,z,W = I(O,y,z,Q), VQ, (2c) 
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for @,z)~ E (O,Ly)O(O,L,), and similarly in (O,Lx)O(O,L,). Figure 1 illustrates the geometry and 
notations. 

0 

-420 for zenith sun 

I ~ ( e  ,cp> = (sinecoscp,sinesincp,cose) 
-510 for slant sun 
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Figure-1: Schematic of Albedo Problem Illustrated with Square-Wave Cloud Model (Case #I). 
In absence of y-variability, grid size in this direction, Ly, is arbitrarily set equal to its counterpart 
for z ,  L, = 0.25 km = 1, = Lx/2 ( N ,  = 2). Infinite periodic replication of the basic element in the 
picture is represented by ‘‘.*.’’ (x-direction) and “.-“’ (y-direction). Both zenith and slant solar 
illuminations are shown along with an arbitrary reflected beam. 

One can also use I(r,Q) to model only the “diffuse” component of the radiance field: 
Z(r,Q) becomes Z(r,Q) + Fo6(51+Q0)exp[-z(r;ro(r,Qo))] 

ro(r,Qo) = r + QOSO, so = (L,-z)/Qo, 

(3 ) 

(4) 
where the latter term is the “direct” (or “non-scattered” or “un-collided”) component with 

being the piercing point at the upper (illuminated) boundary, z = L,, for the solar beam reaching r. 
We also need to define 

I Ir ’4 I 
~ ( r ; r ’ )  = Ja(r+s(rJ-r)/Jlr’-rJI)ds ( 5 )  

0 
as the optical distance between two points in M. In this case, we set I(x,y,L,,Q) = 0 in the upper 
BC in (2a) and, in the RTE (l), we use the following internal source term: 

S(r,Q) = ~ o ~ ~ p ~ - ~ ~ ~ ; ~ o ~ ~ , Q o ~ ~ l ~ ~ ~ ) ~ o p ~ - Q ~ Q o ) .  (6 )  
REMARKS: 
a. Formal Solution of RTE. 

In absence on scattering (a0 = 0), the 3D RTE is integrable in closed form: 

where s ~ M ( ~ , Q )  defines the boundary piercing point for the beam arriving at r in direction 51 
which can be computed much as in Eq. (4). Note that Q is clearly more like a parameter or label 
for the radiance field than an independent variable. This no-scattering assumption is often 
justifiable in thermal IR and microwave spectral regions where, furthermore, S(r,Q) is (l-ao)o(r) 
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times Planck’s function, hencc isotropic (does not depend explicitly on Q). As an example of an 
anisotropic source term, formally using (6) in (7) leads to a 1st-order scattering approximation in 
the solution of the W E .  In fact, one can interpret S(r,Q) in Eq. (7) as the (&integral) multiple 
scattering source term in the RTE which leads to the integral form of the RTE spelled out in Eq. 
(1 1-13) below. 
h. Expansion in spherical Harmonics. 

As soon as mo > 0, the RTE in ( I )  is mathematically speaking an infinite system of 
coupled 1st-order PDEs with its dependent variables’ labels, its coefficients and BCs determined 
by angular variables. The complexity of this situation can be greatly reduced by noting that the 
angular coupling in Eq. (1) is actually to a convolution product of p ( Q ’ 4 2 )  and I(r,Q) in the 
spherical coordinates of Q,  so the angular coupling becomes merely tri-diagonal for the spherical- 
harmonic decompositions of p(Q’*M) and Z(r,Q), respectively, pi and Iim(r) with 12 0 (Iml 5 I ) .  
Many nunierical approaches exploit this simplification, including DANTSYS [Davis et al., 1999; 
and references therein] and SIDOM [Evcins, 19981. The first two spherical harmonics have a 
special significance: at m = 0 we find a scalar measure of radiant energy (or photon) density, 

and at m = 1 we Cind the radiant energy flux vector, 

Radiant energy conservation is expressed by 

J(r) =: jI(r,Q)dQ, (8) 

F ( r )  = jBZ(r,&2)dQ. (9) 

V*F 4- (l---ti~o)o(r)J(~) = 0, (10) 
obtained by integrating over all angles the RTE in (1) when S(r,M) = 0. Diffusion theory [Davis et 
al., 1999; and references therein] uses only the quantities in (8-9) in Eq. ( I  0), which is exact, and 
an approximate relation between F and J (Pick’s law). 
c. Integral Form ojRTE. 

Another conceptual simplification is to transform the angular-integrahpatially-differential 
RTE into a space-angle (5-dimcnsional) integral equation that incorporates the BCs. For the 3D 
atmospheric albedo problem with an absorbing surface, we have [Marchuk et al., 19801 

I(r,B) := K[r’,G!’;r,Q] Z(r’,Q’) dr’dL2’ +f(r ,Q) ,  (1 1) 
M 4n 

where the propagation kernel is given by 

exp[-z(r ’ ;r)]  r-r ’ K[r’ ,QY;r,Q] = mo o(r’)p(Q’*Q) -- 6(Q - K’) I Ir-r ’I l2 r-r II 
and the new source term is 

f (r ,Q) = K[r’,Qo;r,M] exp[-z(r’;ro)] dr’. 
M 

(13) 

The above integral form of the R’TE underscores the nonlocal nature of the multiple scattering 
problem. Equations (1 1-13) and their kin are exploited numerically in several methods, including 
SHTIOM and Monte Carlo (at least when local estimation techniques are invoked). 
d. Green’s Functioris und Superposition Principle. 

The RTE in (1) is linear with respect to the sources, internal and/or at boundaries. This 
leads to a superposition principle that can be used to express the solution of the general “3D 
atmosphere over Lainbertian surface prob1t:m” (or any other for that matter) to an infinite weighted 
sum of fundamental solutions, or Green’s functions, defined by S(r,Q) = 6(r-r*))6(Q-Q2”) and 
homogeneous BCs (i.e., no incoming radi;ition). “Backward” Monte Carlo techniques [Marchuk 
et al., 1980; Marshak und Davis, 19991 exploit this formalism to give accurate numerical estimates 
of single radiance values (in this case, at point r* in direction Q*) for one or more source 
geometries; this is one of the most efficient ways of modeling a single instrument’s response. 
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2. Definitions of 2D 0- and &Related Quantities Relevant to I3RC - Phase 1 
For I3RC, we are interested primarily in the “escaping” radiance fields, namely, 

Z(x,y,L,,Q) with Qz 2 0, 
Z(x,y,O,Q) with S Z ,  5 0, 

(14a) 

( 14b) 
for (x,y)T E (O,L,)O(O,Ly), respectively for reflected and transmitted radiation. Of particular 
interest to cloud remote sensing applications from space and ground are vertical radiances, 
respectively towards zenith and towards nadir; these quantities are usually expressed in non- 
dimensional “bidirectional reflection distribution function” (BRDF) units as a ratio of I with 
b F & ,  the radiance from a perfect Lambertian reflector, specifically: 

Z?(x,y) = nZ(x,y,L,, 0,0,1)) / poF0, (15a) 

Z.L(x,y) = nZ(x,y,O, 0909-1)) / PoFo. ( 15b) 
In radiative energy budget applications, one is more interested in normalized hemi-spherical fluxes 
at boundaries: 

which are respectively the albedo and transmittance fields (not vertical components of net fluxes). 
Note that, if the direcddiffuse separation in (3) in invoked, the directly transmitted contributions are 
required in (14b), possibly in (15b), and certainly in (16b) as well as in (2b’) where T(x,y) 
appears on the right hand side and (10). 

Another quantity of interest is “apparent” column absorption, 

Aapp(4Y) = [-Fz(x,y,Lz>+Fz(x,Y,o)l / PoFo = 1 - R(x,y) - (1-(W(x,y), (17) 
as well as (true) column absorption, 

Lz LZ 

A(x,y) = (l-mo) j o(r>J(r)dz / POFO = - SV*P(r)dz / poFo, (18) 

where -V*F(r) is proportional to the local solar heating rate. The difference between the apparent 
and true absorptions in Eqs. (17-1 8) is the vertically-integrated horizontal flux divergence: 

0 0 

W , y )  = 1 - A(4Y) - R(&Y) - (l-cW(-x,y) = j [a,Fx+ayFyldz / POFO. (19) 

Note that in typical 3D geometries H can be quite small even though none of its positive (A, R ,  T )  
or signed (Aapp, F,, Fy) components are. 

Although generally insufficient to describe the 3D structure of a real cloud, often all that is 
available from remote sensing data (cf. I3RC “Landsat” case) or simple stochastic models (such as 
bounded cascades [Cahalan et al., 1994a1) is optical depth as a function of position in the 
horizontal plane, Le., 

from Eq. (5) for ( x , ~ ) ~  E (O,Lx)O(O,Ly). In the independent pixel approximation (IPA) to 3D 
radiative transfer, all horizontal fluxes are explicitly ignored so Eq. (19) vanishes identically and 
z*(x,y) is all that is needed to predict the other fields. The I3RC study is focused entirely on 
deviations from the IPA, locally and over the entire (x,y)-domain which Cahalan et al. [1994a,b] 
call the “IPA bias.” 

0 

z*(x,y) = z(x,y,O;x,y,L,) (20) 
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3. Numerical Specification of CY- and 1-Variabilities for I3RC - Phase 3 

or “square-wave” cloud (see Fig. 1): 
In the simplest cases, the extinction field ~ ( r )  can specified analytically, e.g., I3RC case #1 

o(r) = [ IO -+ 8xsign(x-~~/2)1 /L,  (21) 
where L, = 0.5 km, L, = 0.25 lcm and, formally, Ly = 00. More generally, it is specified on a 
grid, e.g., I3RC cases #2 and #3: “MMCR“ cloud (see Fig. 2) and “Landsat” cloud (see Fig. 3). 
Either way, the radiance k l d  will necessarily be given numerically on a spatial grid, so we need to 
specify grid sizes on all three axes; in summary: 

axis: X Y 2 
grid size (integer): Nx NY NZ 

L, 
lz = L,lN, outer scale: Lx LY 

grid constant: lx = Lx/& e, = L,/N~ 
BCs: cyclic, Ey. (2c) cyclic (24  and (2b) or (2b’) 

The I3RC cr-grids are characterized as follows: 
I3RC case name Nx Lx NY LY NZ LZ cell-size 

(km) &xlvxlz (m) 
#1 square-wave 2Y[ 0.50 1 00 1 0.25 2 5 0 ~ ~ x 2 5 0  
#2 MMCR 640 32 1 w 54 2.43 5 0 ~ ~ x 4  5 
#3 Landsat 128 3.8 128 3.8 210 2.4& 3Ox30xvar. 

YLThe 4 deviations have equal length and N, = 32 (!, = 15.6 m) is actually for the required radiation fields, the I-grid. 
OEnough to capture the cloud height variability in methods that require a regular 3D grid. &Maximum cloud height. 

- (km) 

MMCRhferred cipticd depth field 2/8/98 (50 m horizontal xesulutiun) 

b o  L. 7- -7 

0 4 tl 12 16 20 24 20 32 

Figure 2: MMCR Cloud Model (Case #2). The gray scale refers to cell optical depth, (~(r)!, .  

IPA-retrieved optical depth field 

distance (km) 

Figure 3: Landsat Cloud (Case #3). 

Cloud geometrical thickness field (km) 
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Optical depth (left) and physical thickness (right) fields. 
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Although not a requirement in general, the grids for (3 and I (and related quantities defined 
in section 2) are identical in I3RC. Sub-grid scale assumptions on CT and I depend on the specific 
method of solution and its implementation; constant (or averaged) is the standard in Monte Carlo 
methods, linear or bi-linear variation are the most common when the RTE is spatially discretized. 

4. Parameter Space Explored in I3RC - Phase 1 
In computational problem set-up in sections 1 and 3, we have left only a few parameters 

unspecified. They are on the one hand solar zenith angle 00 = cos-$0 and surface reflectance a 
for BCs and, on the other hand, the optical (scattering/absorption) properties defined by single- 
scattering albedo a0 along with the specific choice of phase function p(ps). This last choice is 
restricted to either an academic Henyey-Greenstein [ 19411 model, 

(22) 
1 P(Ps> = (1- &/[I+ g2 - 2gPs13’2 

with asymmetry factor g = 0.85 or a more realistic Deirmendjian [1969] “Cl” model. The 
following table summarizes the numerical experiments in I3RC: 

Case # 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 

I d 

4 1  I d  . , I  I d  
I . ,  d d l  21 

p.f.=HG p.f.=Cl 
d 
21 I 
J I  21 
d 
d I 
d l  
d 

d 2 1 1  
I d  2 1 .  
I 

. , I  

.I 
21 
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